

Optimization at AFP06 Using Improved GTS

Kirk M. Cameron, Ph.D. MacStat Consulting, Ltd. 24 February 2003

Basic Goal

- Ensure adequate & sufficient data available to make good decisions
 - May have redundant sampling information
 - Want to minimize waste; maximize usefulness of data collected
- Optimization algorithm looks at two areas:
 - Monitoring network locations
 - Sampling frequencies within network

Related Applications

- **■** Optimization of treatment systems
 - Example: sampling frequencies of influent/effluent for pump & treat operations
- Characterization & mapping of sites
 - Change in contaminant patterns over time
 - Hydrogeologic parameters needed for flow-based geophysical or fate/transport models
 - Subsurface mapping (bedrock, other strata)
 - Determining optimal locations for new sampling or drilling

GTS Algorithm

- Designed with decision-logic framework
- Allows for separate identification of temporal & spatial redundancy
- Uses geostatistical and trend optimization methods
 - Variogram = spatial correlation measure
 - Kriging = spatial interpolation = spatial regression
 - Non-parametric linear regression
 - **■** Locally-weighted regression

End-Products

- Optimized sampling frequencies
- Identification of essential MW locations
- Typical reduction in sampling efforts/costs of 20-40%

Identifying Redundant Wells

Geostatistics at AFP06

- **AFP06**
 - 3 possibly interconnected plumes of TCE
 - B-4, B-10, B-90 sites
- Challenges at Plant 6
 - Complex geologic/hydrogeologic environment
 - **■** Fractured geology
 - Uncertain hydraulic connectivity between subsurface horizons
 - Poor spatial coverage in existing well network
 - Bunching of wells along specific site features
 - Uneven 3-D coverage

Why Use GTS?

- Must be able to rank well locations by spatial contribution to identify optimal networks
 - Other interpolators choose weights according to distance
 - Inverse squared distance, triangulation, most contouring packages
 - Kriging uses spatial correlation model, incorporating spatial layout, distance, measurement correlations
- Must also assess uncertainty
 - Most popular interpolators do not or cannot
 - Kriging does
 - Can judge when optimal network is identified
 - Can determine level of statistical information contained in given network

The GTS Advantage

- Four separate measures used to assess spatial uncertainty/optimality
 - Net change in global variance
 - Net portion of site that becomes inestimable
 - Portion of site where net change in local variance exceeds threshold
 - Portion of site where net change in mapped concentration exceeds threshold

Kriging Differences: 2nd Cutoff

Kriging Differences: 4th Cutoff

Kriging Differences: 6th Cutoff

Local KV Ratios: 1st Cutoff

Local KV Ratios: 3rd Cutoff

Local KV Ratios: 5th Cutoff

The GTS Advantage (cont)

- Objective criteria for ranking well locations according to redundancy
 - Most subjectivity eliminated

Example: Global Kriging Wgts

GTS Improvements

- Estimating spatial correlation
 - Better spatial modeling
- Improved spatial regression
 - Probability Kriging
 - Alternate approach: locally-wgted regression
- Identifying optimal spatial networks
 - **■** Testing new alternatives
 - Genetic algorithms
 - Using declustering wgts
- Improved temporal optimization

Modeling Spatial Correlation

- Good correlation model drives spatial regression process
 - Avoid outliers
 - **■** Find directions of anisotropy
 - Fit smooth models of correlation
- Dealing with variogram outliers
 - Exclude outliers from local nbhds of measurement pairs
 - Robust statistics used to fit/identify key variogram features

Minimizing Spatial Outliers

Robust Variograms

Finding Anisotropy

- Anisotropy search routine
 - Plot variogram differences between major and minor axes for all planar orientations
- Variogram surfaces (2-D) and solids (3-D)

Anisotropy Search

Variogram Surface

Fitting Smooth Models

- Locally-weighted smoothing of empirical variograms
 - Moving windows
 - Weights decrease with pair distance from target lag
- Bootstrapped confidence bounds

Smoother Variograms

Building Accurate Maps

- Highly skewed measurement data often lead to skewed maps
 - Hard to identify smooth spatial correlation model with raw data
- Log-transform can lead to back-transform bias in kriged estimates
- **■** Alternatives:
 - Probability kriging
 - Locally-weighted quadratic regression

Probability Kriging

- 3-5 target contour levels
 - Indicator values formed from data at each contour
 - Each indicator kriged in conjunction with uniform score transformation of original data
 - All values between 0 and 1
 - Indicators = probability of being below target contour
- Conditional/updated distribution built at each pixel/voxel
 - Can get direct estimates of mean, SD, conf intervals
- Misclassification probabilities
 - How likely that a pixel/voxel has been classified on wrong side of target contour?

Probability Kriging Example

Misclassification Map

Locally-weighted Regression

■ Different assumptions from kriging

- Not an interpolator, but a smoother
- Uncorrelated errors
 - Spatial correlation due to contours of underlying mean surface

Advantages

- No separate spatial modeling effort required
- Multiple data pts per well allowed (e.g., multiple sampling dates)
- Explicitly measures uncertainty based on data sparsity and local curvature of variable being mapped

Picking Optimal Networks

- Current GTS approach
 - Use global kriging wgts to rank well locations
 - Iteratively drop lowest contributors
 - Re-krig until too much spatial information lost
- **■** Alternatives:
 - **■** Genetic algorithms
 - Declustering weights

Alternatives

- Declustering wgts
 - Usually used to identify more accurate distribution of variable of interest
 - Minimizes effect of spatial clustering
 - Can also be used to proportionately weight each data location, based on spatial correlation
- Declustering wgts can then replace global kriging wgts in identifying lowest contributors
 - Still must perform kriging to gauge loss of spatial information

Genetic Algorithms

- Candidate networks randomly generated, then evolved to select fittest choices
 - Mating, mutations
 - Fitness can be based on multiple criteria:
 - Cost of sampling
 - Minimum spatial variance
- Still requires spatial regression to evaluate fitness of any candidate network
 - Can be computationally intensive

Temporal Optimization

■ Current GTS framework

- Site-wide sampling frequencies
 - Temporal, multi-well variogram
- Well-specific frequencies
 - Non-parametric linear regression
 - Iterative thinning algorithm
 - Most useful for wells with roughly linear trend components
- Alternative: locally-weighted regression
 - Still close to non-parametric
 - Allows for complex trends & estimation of conf bnds
 - Can still use iterative thinning approach

Paid Advertisement

- Remember: the devil is always in the details
- If you want quality and optimality you can count on, don't settle for a GTS substitute
- Always use the real thing!
- GTS the optimization solution*

*Paid for by GTS Promotions, Inc